首页 > 论文期刊知识库 > 英语专业外文文献

英语专业外文文献

发布时间:

英语专业外文文献

用TimesNewRoman。每一条目顶格,如某一条目超过一行,从第二行起“悬挂缩进”2字符。参考文献中所有标点与符号均在英文状态下输入,标点符号后空一格。参考文献条目排列顺序:英文文献、中文文献、网络文献。分别按作者姓氏字母顺序排列。文献前不用序号。英文参考文献专著与编著排列顺序为:作者姓、名、专著名、出版地、出版社、出版年。

(1)独着  [1]Mackendric,PThe Greek Stones Speak:The Story of Archaeology in Greek L New York:SMartin's Press,  此种格式中,作者的姓在前、名在后,姓与名之间用逗号分开,后面加点号。论着标题必须完整无缺,后面也加点号。接下来是出版地点、出版商和出版日期。  (2)合着(两到三名作者)  [2]Meltzer,Milton and Walter HA Thoreau PNewYork:Crowell,  此种格式中,只把第一作者的名与姓颠倒,其余作者姓名保持不变。  (3)合着(三名以上作者)  [3]Scott,FS,et English Grammar:A Linguistic Study of Its Classes and SLondon:Heinemann,  (4)合着  (a)以单位名称开始  [4]United States Capitol SWe,the People:The Story of the United States CWashington DC:National Geographic Society,  (b)以标题开始  [5]We,the People:The Story of the United States CBy the United States Capitol SWashington DC:National Geographic Society,  (5)着作(一卷以上)  [6]Graves,RThe Greek M2 Baltimore,M:Penguin,  如果你引用的资料分别来自着作的两卷,则采用这种办法;如果只来自其中一卷,则把卷数列在该书目的末尾。如:  [7]Graves,RThe Greek MBaltimore,M:Penguin,V  (6)编着  [8]Dreiser,TSister CEKenneth SLNewYork:Rinehart,  如果引用的资料来自编着中的某一作者,则把该作者的姓名放在开头。如:  [9]Lynn,Kenneth S,Sister CBy Theodore DNew York:Rinehart,  (7)引用同一作者在一本书中的内容  [10]Thomas,L “The Long H” In the Lives of a Cell:Notes of a Biology WNew York:Viking,1974,47-  (8)引用多名作者在一本书中的内容  [11] Dimock,George E,J “The Name of O” In Essays on the Odyssey:Selected Modern C E Charles H,T Blooming:Indiana University Press,1963,54-  (9)再版  [12]Orstein,Robert EThe Psychology of CNew York:Harcourt,  (10)系列出版物  [13]Downer,Alan SRecent American D University of Minnesota Pamphlets on American W  (11)译着  [14]Freud,S (1950)。Totem and TTHames SNew York:N  如果译者的内容在论文中被引用,译者的姓名则要放在目录条的开始:  [15]Strachey,J, (1950)。Totem and TBy Sigmund FNew York:N  (12)援引百科全书中的某篇文章  [16]Spilhaus,A&Jane JS(1974)。 Pollution C Encyclopedia Britannica:M  如果文章作者姓名不详细,就可以把文章名放在前面。  [17]P(1963)。The Columbia E  (13)编页码的报刊或杂志中的一篇文章  [18]Delbruck ,M(1978)Mind from Matter?The American Scholar,47 339-  (14)报纸上的一篇文章  [19]Strout,RL (1978,N10)。Another B Christian Science Monitor,C   (15)编着中的文章或章节  [20]Burghardt,GM (1984)。On the Origin of Pln PKSmith(E),Play in Animals and Humans (5-42)。Oxford:Basil B  即使当文章作者和编着者是同一个人时,作者名和编者名都要列在其相应的位置,例如:  [21]Olney,J (1980)。Autobiography and the Cultural Moment:A Thematic,Historical,and Bibliographical I In JOlney (E),Autobiography:Essays Theoretical and Critical (3-27)。Princeton:Princeton University P  (16)网络上的文章  [22]Taylor,C (1992,August 10)。Reflections on Windows Word P Buffer:The Newsjournal of Computing at the University of Denver [on-line]Available Internet:… N Minneapolis:University of Minnesota Press,  必须特别指出的是,英语专业学生写毕业论文时,“参考书目”中应该包括英语和汉语两种资料。先列英文参考书目,后列中文参考书目,最后是网络参考书目。英文按作者姓的字母顺序排序,中文按作者姓名拼音的字母顺序排序。

咨询师姐师兄,同时,也建议倾听导师的建议。另外,通过校园网登陆学校图书馆,上面有免费资源可以利用,下载论文。

[3] Tomas U G Social Capital and Career Success of Civil Engineers towards Designing Career Paths[J] [4] Doug SWorking as aMechanic Was Good Preparation For a Career as a Civil Engineer[J] 84(2):14- 以上两篇参考文献的类型属于期刊论文,第[3]篇缺少出处信息:刊名,年,卷(期):起止页码。第[4]篇缺少刊名和出版年的信息。请使用数据库检索到这两篇文献,补齐缺少的信息。期刊的参考文献格式(GB 7714-2015 信息和文献 参考文献著录规则)是: [序号]作者论文题名[J]刊名,年,卷(期):起止页码 注意,欧美作者的要求是:姓在前,署全称,字母全大写,名在后,可缩写,多作者之间用“,”隔开,最多署3个作者,三个以上的作者省略,用“et ”。

英语专业翻译类外文参考文献

文献综述反映当前某一领域中某分支学科或重要专题的历史现状、最新进展、学术见解和建议,它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。文献综述是针对某一研究领域分析和描述前人已经做了哪些工作,进展到何程度,要求对国内外相关研究的动态、前沿性问题做出较详细的综述,并提供参考文献。作者一般不在其中发表个人见解和建议,也不做任何评论,只是客观概括地反映事实。  一、何谓文献综述?  文献综述是对某一学科、专业或专题的大量文献进行整理筛选、分析研究和综合提炼而成的一种学术论文,是高度浓缩的文献产品。根据其涉及的内容范围不同,综述可分为综合性综述和专题性综述两种类型。所谓综合性综述是以一个学科或专业为对象,而专题性综述则是以一个论题为对象的。学生毕业论文主要为专题性综述。  二、要求同学们学写综述的意义   通过搜集文献资料过程,可进一步熟悉文献的查找方法和资料的积累方法,在查找的过程中同时也扩大了知识面;  查找文献资料、写文献综述是科研选题的第一步,因此学习文献综述的撰写也是为今后科研活动打基础的过程;  通过综述的写作过程,能提高归纳、分析、综合能力,有利于独立工作能力和科研能力的提高。  三、文献资料的搜集  文献资料的搜集途径:  利用有关的检索工具(包括目录、文摘和索引等)搜集文献资料。  利用国际联机检索系统搜集文献资料。  利用原始文献(包括专业期刊、科技报告、专利文献、学位论文、会议文献、专著和标准等)搜集文献资料。  利用三次文献(包括综述、述评、百科全书、年鉴和手册等)搜集文献资料。  通过Interent网和光盘数据库搜集文献资料。  四、撰写文献综述时应注意以下问题   搜集文献应尽量全。掌握全面、大量的文献资料是写好综述的前提,否则,随便搜集一点资料就动手撰写是不可能写出好多综述的,甚至写出的文章根本不成为综述。   注意引用文献的代表性、可靠性和科学性。在搜集到的文献中可能出现观点雷同,有的文献在可靠性及科学性方面存在着差异,因此在引用文献时应注意选用代表性、可靠性和科学性较好的文献。   要围绕主题对文献的各种观点作比较分析,不要教科书式地将有关的理论和学派观点简要地汇总陈述一遍。   文献综述在逻辑上要合理,即做到由远而近先引用关系较远的文献,最后才是关联最密切的文献。   评述(特别是批评前人不足时)要引用原作者的原文(防止对原作者论点的误解),不要贬低别人抬高自己,不能从二手材料来判定原作者的“错误”。   文献综述结果要说清前人工作的不足,衬托出作进一步研究的必要性和理论价值。   采用了文献中的观点和内容应注明来源,模型、图表、数据应注明出处,不要含糊不清。   文献综述最后要有简要总结,表明前人为该领域研究打下的工作基础。   所有提到的参考文献都应和所研究问题直接相关。   文献综述所用的文献,应主要选自学术期刊或学术会议   所引用的文献应是亲自读过的原著全文,不可只根据摘要即加以引用,更不能引用由文献引用的内容而并末见到被引用的原文,因为这往往是造成误解或曲解原意的重要原因,有时可给综述的科学价值造成不可弥补的损失。  五、文献综述的结构  文献综述主体部分的格式一般由前言、主题、结语三大部分组成,看起来和科技论文相似,但论述的重点不同。  这里是一篇文献综述正文部分的写作框架:  1.前言或简介(问题的提出,背景,动机等等);  2.参考文献的来源及其主要的观点或学术流派、技术路线介绍;  3.各种观点的评价或各个学术流派、技术路线的发展趋势;  4.结语:值得关注的若干问题、目前该领域尚需探索的重大空白等等。  毕业论文的文献综述主要是为自己写作毕业论文提供文献方面的帮助和指导的,所以,只要把自己所作题目的相关文献找准、找全(这是编写参考文献题录阶段必须做好的工作),然后对这些文献中的观点、方法、原理、材料等等进行归纳和总结,形成文字就可以了,完全没有必要像做毕业论文那样,把自己的发明和创新全写上去,更不要象写教科书那样,从古到今面面俱到。总之,一篇好的文献综述,应有较完整的文献资料,有评论分析,并能准确地反映主题内容。  六、论文后参考文献表排写格式  每一参考文献条目的最后均以“。”结束。参考文献按在正文中出现的先后次序列表于文后,表上以“参考文献”居中排作为标识;参考文献的序号左顶格,并用数字加方括号表示,如[1],[2],…,以与正文中的指示序号格式一致。

一般是要的

参考文献(即引文出处)的类型以单字母方式标识,具体如下:M——专著 C——论文集 N——报纸文章J——期刊文章 D——学位论文 R——报告对于不属于上述的文献类型,采用字母“Z”标识。对于英文参考文献,还应注意以下两点:①作者姓名采用“姓在前名在后”原则,具体格式是: 姓,名字的首字母 如: Malcolm Richard Cowley 应为:Cowley, MR,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F & IG;②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly。[2] (美)Bruce Eckel著. C++编程思想.刘综田等译.北京:机械工业出版社,2000[3] (美)William Ford等著. 数据结构C++语言描述(第2版).陈君译鸡北京:清华大学出版社,2003

楼上强大。。我想说楼主必然还是学生,据我所知大学的在线图书馆都有极其强大的database数据库,你可以去数据库找找资料,会有很多。。。。

食品专业英语英文文献

食品科学与工程专业阅读英文英语文献一般用什么软件?这个都是差不多的就是了,谁说的食品科学就非要用一定的英语软件呢?

专业英语文献翻译

翻译软件哪家强?学姐有窍门英文文献整段翻译,准确率高排版不变

对于一些专业的英语学术文献,一般需要翻译整个文档,这里安利一下网易有道词典,不仅可以翻译一段文字,还能翻译整个文档,还是比较方便的。

为找出一个多边形是否属于某一组,不论是直接或间接属于,调用(传送指令以控制计算机的闭型例行子程序): morfit3dW多边形在组中(Number polygon_handle, Number group_handle);

morfit3dWEngine_is_movement_possible()只返回第一个多边形,你会打从一个地点转移到另一个。如果你想知道有多少多边形,你将通过对2个点之间,通过使用路径: 点morfit3dWEngine_get_number_of_collisions() 除了返回冲突的数量,它计算的平均多边形的封锁所有正常。

材料专业英语文献

你不如全文给我们,我们帮你全部做好。只要你付费。

中国此类科技文献现在一般都是直接使用英语,行内的都看得懂。全世界现在只有日本还在做一有新期刊就通过化学学会进行统一日本语化的做法,因为这样需要大量的人力物力。你如果需要写论文的话直接把breath-figure法放着,大家都看得懂的。至于breath-figure法是什么具体的方法,我帮你找了下。“1994年, Francois等人首次以二硫化碳为溶剂, 在高湿度条件下制备了基于星形聚合物的蜂窝状有序膜[1] 这一方法被称作“breath figure”法、水辅助法(water-assisted method)或水滴模板法(water drop templating method)”(引用自)注释[1]的原始文献来源是Widawski G, Rawiso M, Francois B Self-organized honeycomb morphology of star-polymer polystyrene Nature, 1994, 369(6479): 387—389[DOI]感兴趣的可以到nature的数据库里面搜索原文研究下

+Science&printsec=frontcover&source=web&ots=EYOdzukZQ7&sig=bskKId1Ujx5wNc8wLgAqP7KWILw材料科学 Materials ScienceMaterials science or materials engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and This science investigates the relationship between the structure of materials and their It includes elements of applied physics and chemistry, as well as chemical, mechanical, civil and electrical With significant media attention to nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many It is also an important part of forensic engineering and forensic materials engineering, the study of failed products and HistoryThe material of choice of a given era is often its defining point; the Stone Age, Bronze Age, and Steel Age are examples of Materials science is one of the oldest forms of engineering and applied science, deriving from the manufacture of Modern materials science evolved directly from metallurgy, which itself evolved from A major breakthrough in the understanding of materials occurred in the late 19th century, when Willard Gibbs demonstrated that thermodynamic properties relating to atomic structure in various phases are related to the physical properties of a Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, from a 19th and early 20th century emphasis on The field has since broadened to include every class of materials, including: ceramics, polymers, semiconductors, magnetic materials, medical implant materials and biological [edit] Fundamentals of materials scienceIn materials science, rather than haphazardly looking for and discovering materials and exploiting their properties, one instead aims to understand materials fundamentally so that new materials with the desired properties can be The basis of all materials science involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final These, taken together and related through the laws of thermodynamics, govern a material’s microstructure, and thus its An old adage in materials science says: "materials are like people; it is the defects that make them interesting" The manufacture of a perfect crystal of a material is currently physically Instead materials scientists manipulate the defects in crystalline materials such as precipitates, grain boundaries (Hall-Petch relationship), interstitial atoms, vacancies or substitutional atoms, to create materials with the desired Not all materials have a regular crystal Polymers display varying degrees of crystallinity, and many are completely non- Glasses, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical In addition to industrial interest, materials science has gradually developed into a field which provides tests for condensed matter or solid state New physics emerge because of the diverse new material properties which need to be [edit] Materials in industryRadical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, ), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, )Besides material characterisation, the material scientist/engineer also deals with the extraction of materials and their conversion into useful Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a metallurgist/ Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10th and 1/100 weight percentages of the carbon and other alloying elements they Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be The overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of The approach is generally more macroscopic and applied than in condensed matter See important publications in materials physics for more details on this field of The study of metal alloys is a significant part of materials Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial Iron alloyed with various proportions of carbon gives low, mid and high carbon For the steels, the hardness and tensile strength of the steel is directly related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and The addition of silicon and graphitization will produce cast irons (although some cast irons are made precisely with no graphitization) The addition of chromium, nickel and molybdenum to carbon steels (more than 10%) gives us stainless Other significant metallic alloys are those of aluminium, titanium, copper and Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively The alloys of aluminium, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering Other than metals, polymers and ceramics are also an important part of materials Polymers are the raw materials (the resins) used to make what we commonly call Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and Plastics are generally classified as "commodity", "specialty" and "engineering" PVC (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and Its fabrication and processing are simple and well- The versatility of PVC is due to the wide range of plasticisers and other additives that it The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material Polycarbonate would be normally considered an engineering plastic (other examples include PEEK, ABS) Engineering plastics are valued for their superior strengths and other special material They are usually not used for disposable applications, unlike commodity Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, It should be noted here that the dividing line between the various types of plastics is not based on material but rather on their properties and For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas Medium-Density Polyethylene MDPE is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip Another application of material science in industry is the making of composite Composite materials are structured materials composed of two or more macroscopic An example would be steel-reinforced concrete; another can be seen in the "plastic" casings of television sets, cell-phones and so These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibres or carbon fibres have been added for added strength, bulk, or electro-static These additions may be referred to as reinforcing fibres, or dispersants, depending on their [edit] Classes of materials (by bond types)Materials science encompasses various classes of materials, each of which may constitute a separate Materials are sometimes classified by the type of bonding present between the atoms:Ionic crystals Covalent crystals Metals Intermetallics Semiconductors Polymers Composite materials Vitreous materials [edit] Sub-fields of materials scienceNanotechnology – rigorously, the study of materials where the effects of quantum confinement, the Gibbs-Thomson effect, or any other effect only present at the nanoscale is the defining property of the material; but more commonly, it is the creation and study of materials whose defining structural properties are anywhere from less than a nanometer to one hundred nanometers in scale, such as molecularly engineered Microtechnology - study of materials and processes and their interaction, allowing microfabrication of structures of micrometric dimensions, such as MicroElectroMechanical Systems (MEMS) Crystallography – the study of how atoms in a solid fill space, the defects associated with crystal structures such as grain boundaries and dislocations, and the characterization of these structures and their relation to physical Materials Characterization – such as diffraction with x-rays, electrons, or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy (EDS), chromatography, thermal analysis, electron microscope analysis, , in order to understand and define the properties of See also List of surface analysis methods Metallurgy – the study of metals and their alloys, including their extraction, microstructure and Biomaterials – materials that are derived from and/or used with biological Electronic and magnetic materials – materials such as semiconductors used to create integrated circuits, storage media, sensors, and other Tribology – the study of the wear of materials due to friction and other Surface science/Catalysis – interactions and structures between solid-gas solid-liquid or solid-solid Ceramography – the study of the microstructures of high-temperature materials and refractories, including structural ceramics such as RCC, polycrystalline silicon carbide and transformation toughened ceramics Some practitioners often consider rheology a sub-field of materials science, because it can cover any material that However, modern rheology typically deals with non-Newtonian fluid dynamics, so it is often considered a sub-field of continuum See also granular Glass Science – any non-crystalline material including inorganic glasses, vitreous metals and non-oxide Forensic engineering – the study of how products fail, and the vital role of the materials of construction Forensic materials engineering – the study of material failure, and the light it sheds on how engineers specify materials in their product [edit] Topics that form the basis of materials scienceThermodynamics, statistical mechanics, kinetics and physical chemistry, for phase stability, transformations (physical and chemical) and Crystallography and chemical bonding, for understanding how atoms in a material are Mechanics, to understand the mechanical properties of materials and their structural Solid-state physics and quantum mechanics, for the understanding of the electronic, thermal, magnetic, chemical, structural and optical properties of Diffraction and wave mechanics, for the characterization of Chemistry and polymer science, for the understanding of plastics, colloids, ceramics, liquid crystals, solid state chemistry, and Biology, for the integration of materials into biological Continuum mechanics and statistics, for the study of fluid flows and ensemble Mechanics of materials, for the study of the relation between the mechanical behavior of materials and their 材料科学材料是人类可以利用的物质,一般是指固体。而材料科学是研究材料的制备或加工工艺、材料结构与材料性能三者之间的相互关系的科学。涉及的理论包括固体物理学,材料化学,与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。材料科学理论物理冶金学 晶体学 固体物理学 材料化学 材料热力学 材料动力学 材料计算科学[编辑] 材料的分类按化学状态分类 金属材料 无机物非金属材料 陶瓷材料 有机材料 高分子材料 按物理性质分类 高强度材料 耐高温材料 超硬材料 导电材料 绝缘材料 磁性材料 透光材料 半导体材料 按状态分类 单晶材料 多晶质材料 非晶态材料 准晶态材料 按物理效应分类 压电材料 热电材料 铁电材料 光电材料 电光材料 声光材料 磁光材料 激光材料 按用途分类 建筑材料 结构材料 研磨材料 耐火材料 耐酸材料 电工材料 电子材料 光学材料 感光材料 包装材料 按组成分类 单组分材料 复合材料 [编辑] 材料工程技术金属材料成形 机械加工 热加工 陶瓷冶金 粉末冶金 薄膜生长技术 表面处理技术 表面改性技术 表面涂覆技术 热处理 [编辑] 材料的应用结构材料 信息材料 存储材料 半导体材料 宇航材料 建筑材料 能源材料 生物材料 环境材料 储能材料和含能材料 参考%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%A6

这项工作的主要焦点将是评估的过渡时间发作对铁铜合金灌木浸渍和h bn微粒子在变压器油。影响中美光伏(压力速度)参数的过渡时间没收多孔轴承与h bn微颗粒在摩擦的研究工作

  • 索引序列
  • 英语专业外文文献
  • 英语专业翻译类外文参考文献
  • 食品专业英语英文文献
  • 专业英语文献翻译
  • 材料专业英语文献
  • 返回顶部